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Abstract

The Internet consists of thousands of nodes interconnected in complex ways, with millions of
users sending traffic over the network. To understand such a complex system, it is necessary to
develop accurate, yet simple, models to describe the performance of the network. The models have
to be then used to design new algorithms that dramatically improve network performance. In this
project, we have developed a variety of models to capture many phenomena inthe Internet. These
include the following:

• Deterministic fluid models to describe and analyze the performance of congestion manage-
ment mechanisms in the Internet.

• Stochastic models to obtain further insight into the behavior of a single node accessed by
many congestion-controlled sources and to prove that the fluid models are appropriate limits
of the stochastic models when the number of users is large.

• Fluid models to design new congestion-aware routing algorithms that improve thethroughput
of the Internet.

• Fluid models for understanding the performance of peer-to-peer networks.

• Game-theoretic models to understand incentives to deter selfish behavior in peer-to-peer re-
sources.

• Fluid and stochastic models to design joint scheduling and flow control algorithms which lead
to fair resource allocation.

• Game-theoretic models that capture the interaction between selfish users thatcompete for a
common pool of bandwidth.
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1 Introduction

Our goal in the project was to develop models of the Internet at multiple time-scales to capture the
traffic behavior and to develop models to capture the economics of providing resources to competing
users. A detailed simulation model of the Internet would require a stochastic description of the packet
arrival process for various types of traffic streams. However, such models would not be amenable for
analysis and would be too slow for simulation purposes. Thus, a good model should be amenable to
fast simulation or analysis by identifying the critical phenomenon in the time scale of interest.

It has now been established that traffic in the Internet exhibits self-similarity. A major reason for
this is the distribution of file sizes is heavy tailed. This means that most files are short, but there are
few files that are extremely large. It is commonly described using the Internet “80-20” rule: 80% of
the Internet’s traffic is due to 20% of the files. While these precise numbers are subject to continual
change, the fact remains that a few files contribute to most ofthe traffic. Thus, the key observation
is that, to improve network performance, it is important to develop models to control the behavior of
the few large files. In this project, we developed a collection of models that answered fundamental
questions on the behavior of the Internet and we will describe these in the following sections.

As motivation, we now present a very simple model of congestion control in the Internet and use it
to study the performance of current versions of TCP. This simple model provides a powerful argument
for the importance of mathematical modelling of the Internet. Congestion control is implemented in
the Internet using awindow flow controlalgorithm. A source’swindow is the maximum number of
unacknowledged packets that the source can inject into the network at any time. For example, if the
window size is1, then the source maintains a counter which has a maximum valueof 1. The counter
indicates the number of packets that it can send into the network. The counter’s value is initially
equal to the window size. When the source sends one packet intothe network, the counter is reduced
by 1. Thus, the counter in this example would become zero after each packet transmission and the
source cannot send any more packets into the network till thecounter hits1 again. To increment the
counter, the source waits for the destination to acknowledge that it has received the packet. This is
accomplished by sending a small packet called theackpacket, from the destination back to the source.
Upon receiving the ack, the counter is incremented by1 and thus, the source can again send one more
packet. We use the termround-trip time (RTT)to refer to the amount of time that elapses between the
instant that the source transmits a packet and the instant atwhich it receives the acknowledgment for
the packet. The RTT consists of three components: the propagation delay of the packet through the
transmission medium (which is determined by the distance between the source and destination), the
queueing delay at the routers in the network and the time taken to process a packet at the routers in the
network. Typically, the processing time is negligible compared to the other two components. With a
window size of1, since one packet is transmitted during every RTT, the source’s data transmission rate
is 1/RTT packets/sec.

If the window is2, the counter’s value is initially set to2. Thus, the source can send two back-to-
back packets into the network. For each transmitted packet,the counter is decremented by1. Thus,
after the first two packet transmissions, the counter is decremented to zero. When one of the packets is
acknowledged and the ack reaches the source, then the sourceincrements the counter by1 and can send
one more packet into the network. Once the new packet is transmitted, the counter is again decremented
back to zero. Thus, after each ack, one packet is sent, and then, the source has to wait for the next ack
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before it can send another packet. If one assumes that the processing speed of the link is very fast
and that the processing times at the source and destination are negligible, then the source can transmit
two packets during every RTT. Thus, the source’s transmission rate is2/RTT packets/sec. From the
above argument, it should be clear that, if the window size isW, then the transmission rate can be
approximated byW/RTT packets/sec.

If the link capacity isc and the source’s window sizeW is such thatW/RTT < c, then the system
will be stable. In other words, all transmitted packets willbe eventually processed by the link and
reach the intended destination. However, in a general network, the available capacity cannot be easily
determined by a source. The network is shared by many sourceswhich share the capacities at the
various links in the network. Thus, each source has to adaptively estimate the value of the window size
that can be supported by the network. The most widely-used algorithm for this purpose in the Internet
today is called TCP-Reno.

The TCP-Reno algorithm is quite complicated and therefore, for our modelling purposes, we con-
sider the following simplified version of the algorithm. Assume that there is a mechanism for the
receiver to indicate to the source that a packet has been lostin the network. Then, the essential features
of the TCP-Reno algorithm can be summarized as below:

• Upon receipt of an ack, the source increases its current window size, denoted bycwnd, as follows:

cwnd ← cwnd + 1/cwnd.

• Upon being informed of a loss, the source decreases its window size by a factor of two:

cwnd ← cwnd/2.

The key feature of TCP-Reno is that it increases its window sizewhen it does not detect congestion
which is indicated by the reception of an ack, and it decreases its window size upon detecting conges-
tion, which is indicated by the detection of a lost packet.

We now present a differential equation model that describesthe TCP-Reno congestion control al-
gorithm. ConsiderN TCP-Reno sources, all with the same RTT, accessing a single link. Let Wr(t)
denote the window size of flowr, T be its RTT, andq(t) be the fraction of packets lost at the link at
time t. Then, the congestion avoidance phase of TCP-Reno can be modelled as

Ẇr =
xr(t − T )(1 − q(t − T ))

Wr

− βxr(t − T )q(t − T )Wr(t), (1)

wherexr(t) = Wr(t)/T is the transmission rate. The parameterβ is the decrease factor and is taken to
be1/2 although studies show that a more precise value ofβ when making a continuous-time approxi-
mation of TCP’s behavior is closer to2/3. Substituting forWr(t) in terms ofxr(t) gives

ẋr =
xr(t − T )(1 − q(t))

T 2xr

− βxr(t − T )q(t)xr(t). (2)

The loss probabilityq(t) is a function of the arrival rate at the link. Thus, let

q(t) = f(y(t − T )),
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wheref(·) is an increasing function andy(t) is the total arrival rate at the link and is given by

y(t) =
N

∑

r=1

xr(t).

The equilibrium value ofxr is easily seen to be

x̂r =

√

1 − q̂

βq̂

1

T
, (3)

whereq̂ is the equilibrium loss probability. We useˆto denote equilibrium values. The functional form
of f(y) could be quite complicated in general. Among other things, it will depend upon the assumptions
on the stochastic behavior of the packet arrival process at the router. To simplify the analysis, we will
assume thatf(y) is of the following simple form:

f(y) =

(

y − c

y

)+

.

Thus, this form off(y) can be interpreted as a fluid approximation to the loss probability: it is equal
to zero if the arrival rate is less than the capacity of the link and is otherwise equal to the fraction by
which the arrival rate exceeds the link capacity. Recall thatthe RTTT consists of two components,
namely the propagation delayTp and the queueing delay at the router. Just like the loss probability, it is
difficult to precisely capture the queueing delay using a simple analytical formula. To obtain a tractable
expression for the queueing delay, we recall that the TCP-Renoprotocol attempts to fill up the buffer
at the router and uses the resulting packet loss to obtain congestion information. Therefore, it seems
reasonable to assume that the queue is full most of time. Under this assumption, our approximation to
the queueing delay takes the formB/c, whereB is the buffer size at the router. Thus, for all users, the
RTT is given by

T = Tq +
B

c
.

To study the stability of the congestion controller given in(2), we first linearize the system around
its equilibrium point. Definingδxr = xr − x̂r, andδq = q − q̂, the linearized form of the congestion
control algorithm is given by

˙δxr = x̂r

(

1 − q̂

T 2x̂2
r

δxr +
1

T 2x̂2
r

δq + βq̂δxr + βx̂rδq

)

,

and
δq =

c

ŷ2

∑

r

δxr(t − T ).

Definingδy = y − ŷ, and using the equilibrium relationship (3) yields

˙δxr + α1δxr + α2δxr(t − T ) = 0, (4)

where
α1 = 2βq̂x̂r, α2 = βx̂r.

A well-known result called Hayes’ lemma states that the linearized delay-differential equation de-
scribing TCP-Reno’s dynamics is stable if one of the followingconditions is satisfied:
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• α1 ≥ α2,

• α1 < α2 and

α2T

√

√

√

√1 −
α2

1

α2
2

< arccos
(

−
α1

α2

)

.

For the first condition to be satisfied, we requireq̂ ≥ 1/2. This is not a practical scenario since it
requires at least half the packets to be dropped at the router. The second condition can be written as

c

N
T <

1

β

(1 − q̂) arccos(−2q̂r)√
1 − 4q̂2

. (5)

Note that the equilibrium relationship (3) can be rewrittenas

(1 − q̂)3

q̂
=

(

c

N
T

)2

.

If we let c/N (which is simply the capacity per user) be a constant and increase the RTT, then it is clear
from the previous equation thatq̂ must decrease. Thus, for largeT, the right-hand side of the stability
condition can be approximated by lettingq̂ = 0 which gives the following condition for stability

c

N
T <

π

2β
.

Clearly, this condition will be violated asT increases orc/N increases. From the above analysis, we
can conclude that TCP-Reno is not a scalable protocol, i.e., its stability is compromised if either the
RTT of the users is large or if the available capacity per userat the router is large. In the following
sections, we present our results on the the use of many other such models to analyze and improve the
performance of resource allocation protocols for the Internet and wireless networks. Papers resulting
from the work carried out in this project can be downloaded from the following websites:
http://www.comm.csl.uiuc.edu/˜srikant and http://www.comm.csl.uiuc.edu/˜hajek.

2 Adaptive Virtual Queue: An Active Queue Management Scheme
for Internet Routers

In the modern day Internet, there has been a strong demand forQoS (Quality-of-Service) and fairness
among flows. As a result, in addition to the sources, the linksalso play an active role in congestion con-
trol and avoidance. Random Early Discard (RED) was originallyproposed to achieve fairness among
sources with different burstiness and to control queue lengths. RED allows for dropping packets at a
router before buffer overflow occurs. Another form of congestion notification that has been discussed
since the advent of RED is Explicit Congestion Notification (ECN). ECN has been proposed to allow
each link to participate in congestion control by notifyingusers when it detects an onset of congestion.
Upon detecting incipient congestion, a bit in the packet header is set to one for the purpose of notifying
the user that a link on its route is experiencing congestion.The user then reacts to themark as if a
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packet has been lost. Thus, the link avoids dropping the packet (thereby enhancing good throughput)
and still manages to convey congestion information to the user.

To provide ECN marks or drop packets in order to control queue lengths or provide fairness, the
routers have to select packets to be marked in a manner that conveys information about the current state
of the network to the users. Algorithms that the routers employ to convey such information are called
Active Queue Management (AQM)schemes. An AQM scheme might mark or drop packets depending
on the policy at the router. Here, we use the term “marking” more generally to refer to any action taken
by the router to notify the user of incipient congestion. Theaction can, in reality, be ECN-type marking
or dropping (as in RED) depending upon the policy set for the router. As in earlier work on studying
AQM schemes, this distinction is blurred in the mathematical analysis to allow for the development of
simple design rules for the choice of AQM parameters. However, our simulations considered marking
and dropping schemes separately.

Designing robust AQM schemes has been a very active researcharea in the Internet community.
Some AQM schemes that have been proposed include RED, SRED, BLUE, Proportional Integral (PI)
controller, and REM. While most of the proposed AQM schemes detect congestion based on the queue
lengths at the link (e.g., RED), some AQM schemes detect congestion based on the arrival rate of the
packets at the link (e.g., virtual queue-based schemes) andsome use a combination of both (e.g., PI).
Also, most of the AQM schemes involve adapting the marking probability (as noted before we use the
termmarkingto refer to bothmarkinganddropping) in some way or the other. An important question
is how fast should one adapt while maintaining the stabilityof the system? Here the system refers
jointly to the TCP congestion controllers operating at the edges of the network and the AQM schemes
operating in the interior of the network. Adapting too fast might make the system respond quickly to
changing network conditions, but it might lead to large oscillatory behavior or in the worst-case even
instability. Adapting too slowly might lead to sluggish behavior and more losses or marks than desired,
which might lead to a lower throughput.

In this project, we developed a virtual-queue based AQM scheme, namely the Adaptive Virtual
Queue (AVQ). The motivation behind the AVQ algorithm is to design an AQM scheme that results in
a low-loss, low-delay and high utilization operation at thelink. We then developed a methodology for
finding the fastest rate at which the marking probability adaptation can take place, given certain system
parameters like the maximum delay and the number of users, sothat the system remains stable. We
note that the marking probability in AVQ is implicit, no marking probability is explicitly calculated and
thus, no random number generation is required. On the other hand, we replace the marking probability
calculation with the computation of the capacity of a virtual queue.

The AVQ algorithm maintains a virtual queue whose capacity (calledvirtual capacity) is less than
the actual capacity of the link. When a packet arrives in the real queue, the virtual queue is also
updated to reflect the new arrival. Packets in the real queue are marked/dropped when the virtual buffer
overflows. The virtual capacity at each link is then adapted to ensure that the total flow entering each
link achieves a desired utilization of the link. An appealing feature of the AVQ scheme is that, in the
absence of feedback delays, the system is fair in the sense that it maximizes the sum of utilities of all
the users in the network. Combining this with the fact that a TCPuserr with an RTT ofdr can be
approximated by a user with a utility function−1

d2
rxr

, wherexr is the rate of the TCP user, shows that the

network as a whole converges to an operating point that minimizes
∑

r
−1

d2
rxr

.
The criterion we use to choose the parameters is local stability of the congestion-controllers and the
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AQM scheme together. We were able to show through simulations that the AVQ controller out performs
a number of other well-known AQM schemes in terms of losses, utilization and average queue length.
In particular, we showed that AVQ is able to maintain a small average queue length at high utilizations
with minimal loss at the routers. This conclusion also holdsin the presence of short flows arriving and
departing at the link. We also showed that AVQ responds to changing network conditions better than
other AQM schemes (in terms of average queue length, utilization and losses).

We also studied the performance of AVQ when dropping (instead of marking) is employed at the
routers. While AVQ performs better than other AQM schemes in terms of utilization and average queue
length, the fairness of AVQ can be improved using a probabilistic AQM scheme (like RED) on AVQ.
We note that a probabilistic AQM scheme on the virtual queue is required only when the link drops
packets and not when the link marks packets because multiplemarks within a single window does not
cause TCP to time-out or go into slow-start.

An important feature of the AVQ algorithm is that one can employ any AQM algorithm in the virtual
queue. Thus, if there are desirable properties in any other marking schemes, one can easily incorporate
it into the AVQ scheme. However, when marking is employed, our experience has been that a simple
mark-tail would suffice.

3 Scalable Congestion Control and AQM Schemes for Arbitrary
Network Topologies

Recently, there has been a flurry of research activity on decentralized end-to-end network congestion
control algorithms. A widely-used framework is to associate a utility function with each flow and
maximize the aggregate system utility function subject to link capacity constraints. Congestion control
schemes can be viewed as decentralized source and router algorithms to drive the system operating
point to the optimum or some suboptimum solution of this maximization problem.

Congestion control schemes can be divided into three classes: primal algorithms, dual algorithms
and primal-dual algorithms. In primal algorithms, the users adapt the source rates dynamically based
on the route prices, and the links select a static law to determine the link prices directly from the arrival
rates at the links. In dual algorithms, on the other hand, thelinks adapt the link prices dynamically
based on the link rates, and the users select a static law to determine the source rates directly from
the route prices and the source parameters. Primal-dual algorithms combine these two schemes and
dynamically compute both user rates and link prices.

A modified primal algorithm, called the AVQ (Active Virtual Queue) algorithm, was introduced in
the previous section. Here the link prices in the original primal algorithm are slowly adjusted so that
asymptotically in time, the link prices become equal to the Lagrange multipliers. More importantly, in
the presence of feedback delays, the parameters of this algorithm can be chosen such that the network
is locally stable. The main benefit of this algorithm is that it achieves arbitrary fairness among the users
and leads to full link utilization. This idea was adopted by others to modify the dual algorithm to allow
slow adaptation at the sources and achieve the same benefits as the AVQ algorithm.

Both the modified primal algorithm and the modified dual algorithm have dynamic adaptations
at both sources and routers, and thus can be regarded primal-dual. However, all the algorithms in
the primal family relate the network congestion measure directly with the link aggregate rate, which

6



corresponds to averaging the feedback from the network at the sources; and all the algorithms in the
dual family relate the source rate directly with the route congestion measure, which corresponds to
averaging the source rates at the links before the feedback of more explicit congestion information to
the sources.

In this section, we briefly describe our work on generalizingthe class ofprimal-dual algorithms,
and provide design guidelines to stabilize these algorithms in general topology networks with hetero-
geneous feedback delays. In this class of algorithms, the source dynamics are similar to those in the
primal algorithm in while the link dynamics are similar to those in the dual algorithm. We obtained a
local stability result which subsumes the dual algorithm asits limiting case when the source adaptation
speed approaches infinity.

From the stability analysis of the general primal-dual algorithm, we also showed that RED (Random
Early Detection) could stabilize TCP-Reno if modified slightly. Our modification to RED sets the
packet marking probability to be an exponential function ofthe length of a virtual queue whose capacity
is slightly smaller than the link capacity. Due to the exponential marking profile, we call it Exponential-
RED (E-RED). From our analysis, it can be shown that E-RED stabilizes TCP-Reno and all its packet
loss/mark based variations. Compared with other queue-length-based AQM schemes, like RED, REM,
PI and BLUE, E-RED is the first such scheme that can be proved to stabilize TCP-Reno for a general
topology network with heterogeneous delays.

We performedns-2 and Matlab simulations to compare E-RED with RED and to discuss the de-
pendence of E-RED’s performance on the network scenario and the E-RED parameter choices. The
simulation results showed that E-RED outperforms RED when combined with TCP-Reno in the sense
that it achieves less queue length oscillation, higher bandwidth utilization, and lower queueing delay at
the same time. The simulation results also show that E-RED works well with other proposals for TCP
in future high bandwidth networks, namely HighSpeed TCP and Scalable TCP.

4 Validity of Fluid Models of Congestion Control

As mentioned previously, deterministic fluid-flow models have been widely used to describe congestion
control and active queue management (AQM) schemes in the Internet. These models capture the mean
behavior of the congestion controlled sources. All of thesemodels use a packet marking (or packet
dropping) function to describe the fraction of packets marked (or dropped) at a link. Depending upon
the model, the marking function is either a function of the queue length or a function of the instanta-
neous arrival rate at the router. In this project, we considered AQM schemes where the router decides
the fraction of packets to be marked based on the occupancy level of a real or virtual queue.

We start with a stochastic model of a single link accessed by many congestion-controlled flows.
Randomness in the congestion-controlled Internet may be dueto many reasons:

• unresponsive flows which do not respond to congestion indication,

• the probabilistic nature of packet marking by an AQM scheme,

• asynchronous updates among sources,

• the inability to precisely model window flow control mechanism, and
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• the initial ramp-up phase (for example,slow startin TCP flow control) of the congestion control
mechanism.

In addition to deriving a deterministic model from this stochastic system under a limiting regime where
the number of sources is large, we also derived a stochastic model to capture the deviations from the
deterministic limit. We used the stochastic model to further study the performance of rate-based and
queue-based models of AQM schemes.

Our main contributions were as follows: depending upon the manner in which a parameter in REM
is scaled with the number of flows, we showed that the limitingdeterministic/stochastic model of the
congestion-controlled link would capture the AQM behaviorusing either a rate-based or a jointly rate-
and-queue-based marking function. The choice of the appropriate model for the marking function is
critical in designing the parameters of the congestion control/AQM scheme.

To demonstrate our results, we simulate a single bottlenecklink accessed by multiple TCP sources,
all of which are in the congestion avoidance phase. Apart from the TCP sources we also consider
unresponsive flows. We use an ON-OFF model for the uncontrolled flows. The uncontrolled flows
toggle between ON and OFF state which are exponentially distributed with mean0.2 s. In the ON
state, an uncontrolled flow sends data at a rateρ packets/s. In all our simulations with various AQM
schemes, we changeN , the number of TCP sources, which is also the number of uncontrolled flows in
the system. The link capacity in all our simulations isNc, wherec = 80 packets/s. The flow rateρ of
the uncontrolled flows in the ON state is adjusted so that uncontrolled flows deliver a load of 25% into
the link. Every simulation result is averaged over 10 runs. We report simulation results with four sets
of parameters as follows:

1. θ = 0.85, γ(N) = 0.0075/N

2. θ = 0.85, γ(N) = 0.0075,

3. θ = 1, γ(N) = 0.05/N,

4. θ = 1, γ(N) = 0.05,

whereθ is the fraction of the virtual queue capacity as a function ofthe link capacity, andγ(N) is the
REM parameter, i.e., when the queue length isq, the marking probability is1 − e−γ(N)q, andN is the
number of TCP users.

We first show results for the caseθ = 0.85, i.e., when the capacity of the virtual queue is0.85Nc,
N being the number of TCP flows in the system. We compare the average throughput obtained from
the simulation with the predicted equilibrium of the suitable limiting model for two different parameter
scalings of REM:γ(N) = 0.0075/N and γ(N) = 0.0075. The plots are shown in Figure 1. The
equilibrium point of the suitable limiting models predict the average throughput into the link reasonably
accurately. Further, if the capacity of the virtual queue is0.85 fraction of the link capacity, it is possible
to attain a mean queue-length (at the real-queue) that does not grow with N , and thus, providing a
queueing delay ofO(1/N). Such a behavior can be observed in the both the regimes ofγ(N) considered
in the plots.

Next we consider the caseθ = 1. Observe thatθ = 1 is equivalent to marking packets based on
the occupancy of the real-queue. In Figure 2, we show the plots of average throughput at the link and

8



the mean queue-length forθ = 1 with two different parameters scalings ofγ(N): γ(N) = 0.05/N and
γ(N) = 0.05. Note that, in this case, anO(1) queue length (and thus a queueing delay ofO(1/N)) at
the real-queue is obtained only in the parameter regimeγ(N) = 0.05.

Based on the two sets of plots, we summarize our observations as follows:

• If the capacity of the virtual queue is less than that of the link capacity, it is possible to attain
a negligible queueing delay in the either parameters regimes of γ(N). The limiting models as
obtained in the previous sections quite accurately predictthe equilibrium values.

• If the capacity of the virtual queue is identical to the link capacity, simulations suggests that neg-
ligible queueing delay can be obtained only in the parameterregimeγ(N) = γ. In this case, the
appropriate limiting model is a rate-based marking model even though marking may be imple-
mented based on the contents of the queue.

0

2000

4000

6000

8000

10000

20 40 60 80 100 120

A
ve

ra
ge

 th
ro

ug
hp

ut
 a

t t
he

 li
nk

 -
--

>

Number of TCP flows --->

Predicted
Simulation

0

2000

4000

6000

8000

10000

20 40 60 80 100 120

A
ve

ra
ge

 th
ro

ug
hp

ut
 a

t t
he

 li
nk

 -
--

>

Number of TCP flows --->

Predicted
Simulation

0

2

4

6

8

10

12

14

20 40 60 80 100 120

M
ea

n 
R

ea
l-Q

ue
ue

 L
en

gt
h 

--
->

Number of TCP flows ---->

Mean
Standard Deviation

0

2

4

6

8

10

12

14

20 40 60 80 100 120

M
ea

n 
R

ea
l-Q

ue
ue

 L
en

gt
h 

--
->

Number of TCP flows ---->

Mean
Standard Deviation

Figure 1: Comparison of average utilization, coefficient of variation and mean queue length with virtual
queue based REM. On the left-hand panel we show plots whenγ(N) is scaled asγ(N) = 0.0075/N , and
the right-hand panel shows plots withγ(N) = 0.0075.
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Figure 2: Comparison of average throughput, and mean queue length with virtual queue based REM
with θ = 1. On the left-hand panel we show plots whenγ(N) is scaled asγ(N) = 0.05/N , and the
right-hand panel shows plots withγ(N) = 0.05.
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5 Modeling Peer-to-Peer Networks

Peer-to-Peer (P2P) applications have become immensely popular in the Internet. Traffic measure-
ments shows that P2P traffic is starting to dominate the bandwidth in certain segments of the Internet.
Among P2P applications, file sharing is perhaps the most popular application. Compared to traditional
client/sever file sharing (such as FTP, WWW), P2P file sharing hasone big advantage, namely, scal-
ability. The performance of traditional file sharing applications deteriorates rapidly as the number of
clients increases, while in a well-designed P2P file sharingsystem, more peers generally means better
performance. There are many P2P file sharing programs, such as Kazza, Gnuttella, eDonkey/overnet,
BitTorrent, to name a few. In this project, we developed simple models to understand and study the
behavior of BitTorrent which is proving to be one of the more popular P2P applications today.

For a BitTorrent network (or a general P2P file sharing network), several issues have to be addressed
in order to understand the behavior of the system.

• Peer Evolution:In P2P file sharing, the number of peers in the system is an important factor in de-
termining network performance. Therefore, it is useful to study how the number of peers evolves
as a function of the request arrival rate, the peer departurerate, the uploading/downloading band-
width of each peer, etc.

• Scalability: To realize the advantages of P2P file sharing, it is importantfor the network perfor-
mance to not deteriorate, and preferably to actually improve, as the size of the network increases.
Network performance can be measured by the average file downloading time and the size of the
network can be characterized by the number of peers, the arrival rate of peers, etc.

• File Sharing Efficiency:It is common for peers in a P2P network to have different upload-
ing/downloading bandwidths. Further, in BitTorrent-like systems, a file may be broken into
smaller pieces and the pieces may be distributed at random among the peers in the network.
To efficiently download the file, it is important to design thefile-sharing protocol such that each
peer is matched with others who have the pieces of the file thatit needs and further, to ensure that
the downloading bandwidth of each peer is fully utilized.

• Incentives to prevent free-riding:Free-riding is a major cause for concern in P2P networks. Free-
riders are peers who try to download from others while not contributing to the network, i.e., by
not uploading to others. Thus, most P2P networks try to buildin some incentives to deter peers
from free-riding. Once the incentive mechanism is introduced into the network, each peer may
try to maximize its own net benefit within the constraints of the incentive mechanism. Thus, it is
important to study the effect of such behavior on the networkperformance.

The basic idea of P2P network is to have peers participate in an application level overlay network
and operate as both servers and clients. Since the service burden is distributed to all participating
peers, the system is expected to scale well even when the network is very large. Besides file sharing,
P2P overlays have also been deployed in distributed directory service, web cache, storage, and grid
computation.

Our work differs from prior work in the following respects:

11



• Instead of developing and numerically studying a detailed stochastic model, we develop a simple
deterministic model which allows us to obtain simple expressions for the average file-transfer
time, thus providing insight into the performance of the P2Pnetwork. We also incorporate realis-
tic scenarios in our fluid model such as the abandonment of filetransfers by peers and download
bandwidth constraints.

• Then, we develop a simple stochastic fluid model which characterizes the variability of the num-
ber of peers around the equilibrium values predicted by the deterministic fluid model.

• We also develop a simple model to study the efficiency of downloading from other peers and
argue that the file-sharing protocol in BiTorrent is very efficient.

• Finally, we consider the mechanisms built into BitTorrent toavoid free-riding and analyze the
impact of these mechanisms on the users’ behaviors and network performance.

We now briefly describe BitTorrent. BitTorrent is a P2P application whose goal is to facilitate
fast downloads of popular files. Here we provide a brief description of how BitTorrent operates when
a single file is downloaded by many users. Typically the number of simultaneous downloaders for
popular files could be of the order of a few hundreds while the total number of downloaders during the
lifetime of a file could be of the order of several tens or sometimes even hundreds of thousands. The
basic idea in BitTorrent is to divide a single large file (typically a few100 MBytes long) into pieces of
size256 KB each. The set of peers attempting to download the file do so by connecting to several other
peers simultaneously and download different pieces of the file from different peers.

To facilitate this process, BitTorrent uses a centralized software called thetracker. In a BitTorrent
network, a peer that wants to download a file first connects to the tracker of the file. The tracker then
returns a random list of peers that have the file. The downloader then establishes a connection to these
other peers and finds out what pieces reside in each of the other peers. A downloader then requests
pieces which it does not have from all the peers to which it is connected. But each peer is allowed
to upload only to a fixed number (default is four) at a given time. Uploading is calledunchokingin
BitTorrent. Which peers to unchoke is determined by the current downloading rate from these peers,
i.e., each peer uploads to the four peers that provide it withthe best downloading rate even though it
may have received requests from more than four downloaders.This mechanism is intended to deter
free-riding. Since a peer is only uploading four other peersat any time, it is possible that a peer, say
Peer A, may not be uploading to a peer, say Peer B, which could provide a higher downloading rate
than any of the peers to which Peer A is currently uploading. Therefore, to allow each peer to explore
the downloading rates of other peers, BitTorrent uses a process calledoptimistic unchoking. Under
optimistic unchoking, each peer randomly selects a fifth peer from which it has received a downloading
request and uploads to this peer. Thus, including optimist unchoking, a peer may be uploading to
five other peers at any time. Optimistic unchoking is attempted once every30 seconds and to allow
optimistic unchoking while keeping the maximum number of uploads equal to five, an upload to the
peer with the least downloading rate is dropped.

BitTorrent distinguishes between two types of peers, namelydownloadersandseeds. Downloaders
are peers who only have a part (or none) of the file while seeds are peers who have all the pieces of
the file but stay in the system to allow other peers to downloadfrom them. Thus, seeds only perform
uploading while downloaders download pieces that they do not have and upload pieces that they have.
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Ideally, one would like an incentive mechanism to encourageseeds to stay in the system. However,
BitTorrent currently does not have such a feature. We simply analyze the performance of BitTorrent as
is.

In practice, a BitTorrent network is a very complicated system. There may be hundreds of peers
in the system. Each peer may have different parts of the file. Each peer may also have different up-
loading/downloading bandwidth. Further, each peer only has partial information of the whole network
and can only make decisions based on local information. In addition, BitTorrent has a protocol (called
therarest-first policy) to ensure a uniform distribution of pieces among the peers and protocols (called
the endgame mode) to prevent users who have all but a few of the pieces from waiting too long to
finish their download. As with any good modelling exercise, we tradeoff between the simplicity of the
model and its ability to capture all facets of the protocol. Thus, we use a simple fluid model to study
the scalability and the stability of the system. We then abstracted the built-in incentive mechanism of
BitTorrent and studied its effect on network performance. Under certain conditions, we proved that a
Nash equilibrium exists, under which each peer chooses its physical uploading bandwidth to be equal
to the actual uploading bandwidth. We also briefly discussedthe effect of optimistic unchoking on
free-riding. Our experimental results show that the simplefluid model can capture the behavior of the
system even when the arrival rate is small.

We performed a series of experiments to validate the fluid model. In the first two experiments, we
compare a simulated BitTorrent-like network and the fluid model. In the last experiment, we actually
introduced a seed into the BitTorrent network, studied the evolution of the seeds/downloaders, and
compared it to our fluid model results. Due to copyright reasons, we obviously could not introduce a
very popular file into the network. However, as we will show inour experimental results, even for a
file which had a total of less than100 completed downloads, the match between the fluid model and the
observed data is quite close.
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Figure 3: Experiment1 : The evolution of the number of seeds as a function of time

Experiment 1 In Figs 3 and 4, we compare the simple deterministic fluid model that we derived
with the results from a discrete-event simulation of a BitTorrent-like network. In the discrete-event
simulation, we use a Markov model. We chose the following parameters for this simulation: the upload
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Figure 4: Experiment1 : The evolution of the number of downloaders as a function of time

rate of a peerµ = 0.00125, the download rate of a peerc = 0.002, the rate at which a user aborts a
downloadθ and the rate at which a seed leaves the systemγ are chosen to beθ = γ = 0.001. When
the number of downloaders is1, we set the probability with which a contacted peer is usefulto another
peer, denoted by the parameterη, is taken to be zero; otherwise, we setη = 1. Initially, there is one seed
and no downloader. We also keep the number of seeds no less than one during the entire simulation.
We change the arrival rateλ from 0.04 to 40 and plot number of seeds/downloaders normalized by the
arrival rate, i.e.,y(t)

λ
and x(t)

λ
, from both simulations and the fluid model. From the figures, wesee that

the simple fluid model is a good approximation of the system whenλ is large, but the match is quite
good even for smallλ. The figures also indicate that the number of downloaders increases linearly with
the arrival rateλ. By Little’s law, this implies that the average download time is constant, independent
of the peer arrival rate, which shows that the system scales very well. In other words, even very popular
files can be downloaded at the same speed as less popular files.
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Figure 5: Experiment2 : The evolution of the number of seeds
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Figure 6: Experiment2 : The evolution of the number of downloaders
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Figure 7: Experiment2 : Histogram of the variation of the number of seeds around the fluid model

Experiment 2 In Figs. 5 and 6, we have the same setting as the first experiment, except that now we
setγ = 0.005. With the change ofγ, the uploading bandwidth now becomes the bottleneck. In this
setting, we have the similar result as before. Again, we see that the simple fluid model is accurate when
λ is large, but performs well even for smallerλ. We also plot the histogram of̂x andŷ (the deviation of
number of downloaders and seeds, respectively, from their fluid model values) in Figs. 7 and 8,

x̂(t) =
xsim(t) − x(t)√

λ

and

ŷ(t) =
ysim(t) − y(t)√

λ
,

wherexsim(t) andysim(t) are the number of downloaders and seeds respectively in the actual simulation
andx(t) andy(t) are the number of downloaders and seeds in deterministic fluid model. From the
theory that we developed, we expect the histograms to look roughly Gaussian and this fact is borne out
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Figure 8: Experiment2 : Histogram of the variation of the number of downloaders around the fluid
model

by the figures for sufficiently largeλ. We can see that the variance ofx̂ andŷ do not change much when
λ changes from0.04 to 40.

Experiment 3 In this experiment, we introduced a file into the BitTorrent network and collected the
log files of the BitTorrent tracker for a time period of around three days. When a peer joins/leaves the
system or completes the download, it reports the event to thetracker. In addition, peers regularly report
information such as the total amount of data uploaded/downloaded so far, the number of bytes that
still need to be downloaded, etc. The tracker keeps all the information in the log files. Hence, we can
analyze the tracker log files and retrieve useful information. The parametersλ, θ, andγ can be measured
by counting the peer arrival, the downloader departure, andthe seed departure respectively. However,
from the tracker log files, we cannot determine whether the uploading bandwidth or the downloading
bandwidth is the bottleneck. So we assume the uploading bandwidth is the bottleneck and estimateµ
by dividing the measured total uploading rate by the number of peers (i.e., we assume thatη = 1).
The size of the file that was introduced was around530MB. The average uploading bandwidth was
estimated to be90kb/s. We use1 min as the time unit to calculate arrival rates, departure rates, etc.
The normalized uploading bandwidth (normalized by the file size in bytes) was estimatedµ = 0.0013.
The downloader leaving rate was estimated to beθ = 0.001. An interesting feature that we observed
in the real BitTorrent is thatλ andγ are in fact time-varying. We attribute this to the fact that when a
new file is introduced into the system, the first few seeds stayin the system long enough to ensure that
there is a sufficient population of peers to sustain the system. If the initial seeds depart too quickly, the
system will simply die, i.e., there will be no one to downloadfrom.

From the tracker logs, we estimate that, fort ≤ 800min, λ = 0.06 andγ = 0.001. Whent ≥
1300min, λ = 0.03 andγ = 0.0044. In between, the arrival rate increases roughly linearly. In our fluid
model simulation, for time between800min and1300min, we letλ andγ change linearly. We also set
the downloading bandwidthc = 1 for the fluid model simulation (note that the actual value ofc will
not affect the fluid model results if it is above a certain threshold).

The simulation results are shown in Figs 9 and 10. The real trace is measured from the tracker log
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Figure 9: Experiment3 : Evolution of the number of seeds
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Figure 10: Experiment3 : Evolution of the number of downloaders

file and the fluid model is calculated by using the above measured parameters. For the fluid model,
we also numerically calculate the standard deviation from the steady state network parameters and
plot the error bar for95% confidence intervals. From Fig. 9, we see that the fluid model captures the
evolution of the number of seeds well. In Fig. 10, the oscillation of the number of downloaders is more
significant. This is because that the file is not very popular and the arrival rateλ is small. Hence, our
model is only an approximation of the real network. But despite this, we can see that the oscillation is
within the level suggested by the95% confidence interval.

6 Multipath Routing

In most prior models of Internet congestion control, it has been assumed that each user is assigned a
single path between its source and destination. The user then reacts to congestion on its path. However,
congestion may be caused indirectly due to inefficiencies inthe routing protocol itself. For example,
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BGP is primarily a policy-based protocol and depending upon the policy, it can sometimes choose a
low bandwidth path for a source, even when an alternate high bandwidth path is available. In this
project, we consider networks where multiple paths are available for each user between its source and
destination, and the user can direct its flow along these paths using source routing. The amount of flow
on each path is determined by the user in response to congestion indications from the routers on the
path. Currently, source routing is not supported in routers in the Internet and so we have tooverlay
the network with routers that allow source routing. Considerthe scenario depicted in Figure 11, which
shows a network of ISP clouds connected by peering points. Inthis network of ISP clouds, depending

ISP 1 ISP 2

ISP 5

ISP 3 ISP 4

P1

P2

P3

P4

Figure 11: A network of ISP clouds. In this figure, the ISPs areconnected via peering points, denoted
by P1 throughP4.

on the policy employed by the ISPs, a connection from ISP2 to ISP4 may be routed via peering point
P4 even though more bandwidth may be available on a different path, say via ISP5, through peering
points P1 and P3. This presents an opportunity for overlay networking to improve the service provided
to the end users in the following manner: suppose that one installs overlay routers at the peering points
and allows source routing at these overlay routers. Further, if the provider of the overlay routing service
buys bandwidth from the ISPs, then one can create a logical network as shown in Figure 12. This would
allow us to provide a service where data transfer can simultaneously take place over multiple routes in
the overlay network.

Two questions immediately arise: (i) where to place these overlay routers given an existing network
topology?, and (ii) given an overlay network of routers, howdoes one design stable congestion control
algorithms that exploit the multi-path routing capability? We are interested in the second question in
this project. This question was answered by Kelly, Maulloo and Tan in the case where there are no
round-trip delays. In this project, we derived a stability condition when there is feedback delay in
obtaining the congestion information. The key idea is that slowly traffic will be shifted from congested
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Figure 12: A logical network formed from the network in Figure 11 by overlaying routers and using
virtual pipes through the ISP clouds. In this example, two sourcesS1 andS2 are transferring data to a
single destination using two paths each

paths to less congested paths. If this process is carried outsufficiently slowly, then large oscillations
can be avoided in the network and the network reaches a fair operating point.

7 Congestion Control in Wireless Networks

The wireless channel is a shared medium over which many userscompete for resources. Since there are
many users, it is important to allocate this shared resourcein a fair manner among the users. Further,
since the available spectrum is limited, it is also important to efficiently use the channel. However, the
time-varying nature of the wireless environment, coupled with different channel conditions for different
users, poses significant challenges to accomplishing thesegoals. Moreover, the lack of availability of
channel and arrival statistics further complicates the solution.

We assume that the packets destined for the different receivers are stored in separate queues. The
scheduler is responsible for allocating resources to the different queues as a function of the current
channel conditions as well as the queue lengths. Prior work on this problem can be largely classified
into two main categories:

• Throughput-optimal scheduling: Here it is assumed that the mean arrival rates of the packets
into each queue lie within the capacity region (the set of sustainable arrival rates) of the channel.
However, neither the actual arrival rates nor the channel capacity region is assumed to be known.
The scheduler is allowed to know the current queue lengths and the current channel conditions.
It has been shown that allocating resources to maximize a queue-length-weighted sum of the
rates (which are feasible in the current time slot) is a stabilizing policy. Such policies are called
throughput optimalsince the queues are stable if the arrival rates lie within the capacity region.

19



• Fair Scheduling:An obvious drawback of throughput-optimal policies is thatno traffic policing
is enforced. For instance, if one or more sources misbehave and increase their arrival rates so
that the set of arrival rates lies outside the capacity region, then the system becomes unstable. In
other words, all flows will be penalized due to the behavior ofa few misbehaving flows. Thus,
an alternative is to provide some degree of flow isolation at least in the long term, by allocating
resources in a fair manner to the various queues. It was shownin the literature that proportional
fairness can be achieved in TDMA cellular networks by scheduling the user which has the largest
ratio of the achievable data rate at the current instant to the average rate that it has been allocated
so far.

From an applications point of view, throughput-optimal scheduling as described above is more
suitable for inelastic traffic where the sources do not adapttheir transmission rate based on congestion
in the network. In this case, admission control is required to ensure that the arrival rates lie within the
capacity region of the network and further, in the case of wireless networks, due to the time-varying
nature of the network, an appropriate scheduling algorithmis required to ensure that the network can
stably serve the admitted traffic. On the other hand, fair scheduling is more suited for elastic traffic
sources which can adjust their traffic rates in response to feedback from the network regarding the
network conditions. Without such a rate-control mechanism, fair scheduling would either lead to under
utilization (when a traffic source is not generating enough data to make use of the bandwidth allocated
to it) or packet losses or large delays (when a traffic source is generating data at a much larger rate than
the rate allocated to it by the base station).

In this project, we are interested in allocating resources to elastic sources whose utilities are de-
scribed by concave functions. Specifically, useri derives a utilityUi(ai) when it transmits at rateai.
For ease of exposition, we consider utility functions of theform

Ui(ai) = βi

a
(1−m)
i

(1 − m)
,

wherem is a positive constant andβi is some fixed weight, which can be different for different users.
Thus, we considerm−weighted proportionally fair resource allocation. Asm → 1, this allocation
converges to the weighted proportionally fair allocation and asm → ∞, it gives the weighted max-
min fair allocation. We assume that congestion informationis conveyed to the sources by putting
the corresponding congestion price in the ACK packets. Each source react to its congestion price by
choosing its transmission rates such that its marginal utility (U ′

i(ai)) is equal to the congestion price.
We take the queue length at the base station to be the congestion price. In the Internet context, this is a
special case of what is known as the dual algorithm. In wireline networks, this interpretation of queue
length (or delay) as the congestion price naturally arises from an convex optimization perspective where
the resource constraints are linear. However, in wireless networks, this interpretation is not immediately
obvious since the resource constraints are not necessarilylinear. Despite this, we show that the dual
algorithm at the sources, along with queue-length-based scheduling at the base station, can be used to
approximate weighted proportional fairness arbitrarily closely, where the approximation depends on
the choice of a certain parameter used in the congestion control algorithm.

The algorithms developed for wireless networks in this project can be immediately implemented
in cellular networks with a base station to perform the scheduling, i.e., the single-hop case. The re-
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sults can also be extended to cover the multi-hop network case. However the scheduler is not imple-
mentable in the absence of a base station since then there is no central scheduler to solve the wireless
resource allocation problem. The challenging problem of obtaining reasonable distributed solutions
for the scheduling problem is still the hurdle whether one considers the throughput-optimal scheduling
problem or the fair scheduling problem that we have considered here.

One penalty for achieving user-defined fairness (as opposedto network-dictated fairness) is the
possibility of large delays at the base station buffers. We can alleviate this problem by implementing
the base station scheduler using virtual queues described earlier in this report. For each flow, the base
station maintains a counter called the virtual queue. As an example, consider flowi. The virtual queue
of flow i keeps track of a virtual queue length, where the virtual queue length of flowi is simply the
length of a queue whose arrivals are the same as that of flowi, but whose service rate is always a
fixed fractionρ < 1 of the actual service rate. Therefore, the size of the virtual queue will always be
larger than the actual queue-length. The congestion feedback given to useri is the virtual queue length
and therefore, useri will reduce its arrival rate well before its real queue builds up significantly. See
Figure 13 for the model from flowi’s perspective.
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Figure 13: The virtual queue implementation at the base station.

By choosing theρ parameter appropriately the delay levels and the packet loss probabilities can
be adjusted: the lower theρ, the lower the actual queue lengths. However, there is a possible loss
in throughput by choosingρ < 1. Simulations not reported here show that, by choosingρ close to
1, but not equal to1, we can reduce the queue lengths dramatically while maintaining close to100%
throughput.

8 Network Economics

Studying the allocation of resources to strategic agents – agents that try to optimize local objective
functions that may not be the same as system-wide objectives– is the focus of micro-economics. In
this project, we explored generic allocation models inspired by modern communication and computa-
tion resources, which have many characteristics not present in earlier models. Two characteristics in
particular are:
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1. Users/ agents may be very heterogeneous, and properly modelling their value functions may not
be possible.

2. Allocation may have to be carried out under constrained communication: it may not be possible
for agents to reveal much information about their preferences to the allocation mechanism.

These characteristics give rise to a few common themes to theotherwise diverse models and analysis
presented in this report. The most important one, arising from the first observation about heterogeneous
agents, is that all the models have a “worst-case” as their central concept: a worst case taken over
very broad spectrum of scenarios under which the resource might have to be allocated. In particular,
minimal assumptions are made on the “types” or value functions of the agents. This is in contrast to
say, Bayesian-Nash analysis, where a-priori probability assumptions are made and the average case is
considered.

Our work addresses the resource allocation problem in the economics literature under auction the-
ory. The users send bids to the network. The network allocates the resources and charges the users
following some mechanism. In the rest of this report, we always call a network user abuyerand fre-
quently call the network theseller. The buyers have valuation functions determining the valueof the
resources allocated to them. Each buyer tries to maximize his value by adjusting his own bid. Therefore,
the auction is formulated as a game. An allocation isefficient(i.e., socially optimal) if the aggregate
value of the buyers is maximized. In this report, we only consider a network with a single network
manager, who wishes to allocate network capacity efficiently. Hence, in the setting of auctions, there
are multiple buyers and one seller. Furthermore, the valuation of the buyers are deterministic, which
implies that the auction game is a Nash game. Note that there are some special properties of the auction
game on a network. First, the resources such as capacity are infinitely divisible. Next, the resources in
a network are inter-connected and a buyer bids for the resources along his path.

Our work consisted of two parts:
In the first part, two different auction game models are discussed. Basically, both models are ex-

tensions of the auction game on a single link network. Since abuyer in the game uses a path through
the network which is combined with several links, the resources it requests from the network is the rate
along the path. One extension of the auction game on single link network is to let the buyers bid for
the capacity on each link separately. We call this theItemized bid gamesince a buyer should have a
bid vector along the path. Another model is theSum bid game, which allows the buyers to have single
value bids. The network allocates the rate along the path by aweighted proportionally fair fashion.
We discuss and compare the condition for a Nash equilibrium point in these two games on a two-link
network. We argue that the sum bid game captures more fully the interactions among strategic buyers.
However, the sum bid game has worse efficiency compared to theitemized bid game and the payoff
function of a buyer in the sum bid game need not to be concave.

In the second part, we focus on the auction game on a single link network and design an efficient
mechanism. That is, we design an efficient mechanism for allocation of an infinitely divisible good.
We present an efficient mechanism in which the bids of the buyers are scale-valued. Basically, the
efficient allocation can be achieved by allocating the good in proportion to the bids and charging the
buyers some non-uniform prices. A buyer has incentive to bidfor efficiency by the rule that he has to
pay an amount equal to the externality he exerts on other competing buyers. Also, the mechanism is
implemented in a decentralized dynamic system. It allows the buyers to update their bids unilaterally
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in seeking personal payoff maximization and finally the system reaches the efficient allocation.

9 Conclusions

In this project, we have demonstrated that simple mathematical models can accurately capture the
dynamics of a complex interconnected system such as the Internet and wireless networks. We have
developed models at various time scales of interest and showed that these models can be used to both
predict network performance as well as to design new protocols to improve the performance. The
majority of the models developed are in the form of deterministic delay differential equations. We have
also used stochastic models to justify that, under practical network operating conditions, the stochastic
models can be well approximated by the delay differential equation models. The models developed
in this project provide a clear insight into the operation ofcomplex communication networks and also
allow us to improve the design of such networks.
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